علوم

العلماء يحلون لغزا عمره 100 عام حول السرطان


كشـ24 نشر في: 25 يناير 2021

يصادف عام 2021 الذكرى المئوية لاكتشاف أساسي يتم تدريسه في كتب الكيمياء الحيوية، والمتمثل فيما يعرف بـ"تأثير واربورغ".وفي عام 1921، لاحظ الطبيب الألماني أوتو واربورغ أن الخلايا السرطانية تحصد الطاقة من سكر الجلوكوز بطريقة غير فعالة بشكل غريب: فبدلا من "حرقها" باستخدام الأكسجين، تقوم الخلايا السرطانية بما تفعله الخميرة، تخمرها. وتحدث هذه العملية المستقلة عن الأكسجين بسرعة، ولكنها تترك الكثير من الطاقة في الجلوكوز غير مستغلة.وتم اقتراح العديد من الفرضيات لتفسير تأثير واربورغ على مر السنين، بما في ذلك فكرة أن الخلايا السرطانية لديها ميتوكوندريا (مصانع طاقة) معيبة، وبالتالي لا يمكنها إجراء عملية احتراق محكم للجلوكوز. لكن أيا من هذه التفسيرات لم تصمد أمام اختبار الزمن. (على سبيل المثال، تعمل الميتوكوندريا في الخلايا السرطانية بشكل جيد).ويقدم فريق بحثي في ​​معهد سلون كيترينغ بقيادة عالم المناعة مينغ لي، إجابة جديدة بناء على مجموعة ضخمة من التجارب الجينية والكيميائية الحيوية ونشرت في 21 يناير في مجلة Science.ويعود الأمر إلى ارتباط لم يسبق له مثيل بين استقلاب واربورغ ونشاط إنزيم قوي في الخلية يسمى "فوسفوينوسيتيد 3 كيناز" (PI3).ويقول الدكتور لي: "إن PI3 هو جزيء إشارة رئيسي يعمل تقريبا مثل القائد العام لعملية التمثيل الغذائي للخلية. ومعظم الأحداث الخلوية المكلفة للطاقة في الخلايا، بما في ذلك انقسام الخلايا، تحدث فقط عندما يعطي PI3 الإشارة".ومع تحول الخلايا إلى استقلاب واربورغ، يزداد نشاط PI3، وبالتالي يتم تعزيز التزام الخلايا بالانقسام. وهو ما يشبه إلى حد ما إعطاء القائد العام مكبر صوت.وتراجع النتائج وجهة النظر المقبولة عموما بين علماء الكيمياء الحيوية التي ترى أن عملية التمثيل الغذائي ثانوية بالنسبة لإشارات الخلية. كما يقترحون أن استهداف التمثيل الغذائي يمكن أن يكون وسيلة فعالة لإحباط نمو السرطان.ودرس الدكتور لي وفريقه، بما في ذلك طالب الدراسات العليا كي شو، استقلاب واربورغ في الخلايا المناعية، والتي تعتمد أيضا على هذا الشكل غير الفعال من التمثيل الغذائي. وعندما يتم تنبيه الخلايا المناعية إلى وجود عدوى، يتحول نوع معين يسمى الخلايا التائية من الشكل النموذجي للتمثيل الغذائي لحرق الأكسجين إلى استقلاب واربورغ حيث تنمو في العدد وتزيد من آليات مكافحة العدوى.والمفتاح الرئيسي الذي يتحكم في هذا التحول هو إنزيم يسمى lactate dehydrogenase A أو اختصارا LDHA، والذي يتم إجراؤه استجابة لإشارات PI3.ونتيجة لهذا التبديل، يظل الجلوكوز يتحلل جزئيا فقط ويتم إنشاء عمل طاقة الخلية، المسماة ATP، بسرعة في العصارة الخلوية للخلية. (على النقيض من ذلك، عندما تستخدم الخلايا الأكسجين لحرق الجلوكوز، تنتقل الجزيئات المتحللة جزئيا إلى الميتوكوندريا ويتم تكسيرها هناك لجعل ATP في تأخير).ووجد الدكتور لي وفريقه أنه في الفئران، لا تستطيع الخلايا التائية التي تفتقر إلى إنزيم LDHA الحفاظ على نشاط PI3، ونتيجة لذلك لا يمكنها مكافحة العدوى بشكل فعال.وبالنسبة للدكتور لي وفريقه، فإن هذا يعني أن هذا الإنزيم الأيضي كان يتحكم في نشاط إشارات الخلية.ويقول الدكتور لي: "لقد عمل هذا المجال على افتراض أن التمثيل الغذائي ثانوي لإشارات عامل النمو. وبعبارة أخرى، تؤدي إشارات عامل النمو إلى عملية التمثيل الغذائي، ويدعم التمثيل الغذائي نمو الخلايا وتكاثرها. لذا فإن ملاحظة أن إنزيم التمثيل الغذائي مثل LDHA يمكن أن يؤثر على إشارات عامل النمو من خلال PI3 لفتت انتباهنا حقا".ومثل الكينازات الأخرى، يعتمد PI3 على ATP للقيام بعمله. ونظرا لأن ATP هو المنتج الصافي لعملية التمثيل الغذائي لواربورغ، يتم إنشاء حلقة ردود فعل إيجابية بين استقلاب واربورغ ونشاط PI3، ما يضمن استمرار نشاط PI3، وبالتالي الانقسام الخلوي.أما عن سبب لجوء الخلايا المناعية المنشطة إلى هذا الشكل من التمثيل الغذائي، فإن الدكتور لي يشتبه في أن ذلك له علاقة بحاجة الخلايا إلى إنتاج ATP بسرعة لتكثيف انقسام الخلايا وآليات مكافحة العدوى.وعلى الرغم من أن الفريق توصل إلى اكتشافاته في الخلايا المناعية، إلا أن هناك أوجه تشابه واضحة مع السرطان.ويقول الدكتور لي: "إن PI3 هو كيناز شديد الأهمية للغاية في سياق السرطان. إنه ما يرسل إشارة النمو للخلايا السرطانية للانقسام، وهو أحد أكثر مسارات الإشارات نشاطا بشكل مفرط في السرطان".وكما هو الحال مع الخلايا المناعية، قد تستخدم الخلايا السرطانية استقلاب واربورغ كطريقة للحفاظ على نشاط مسار الإشارات هذا وبالتالي ضمان استمرار نموها وانقسامها.وتثير النتائج الاحتمال المثير للاهتمام بأن الأطباء يمكن أن يحدوا من نمو السرطان عن طريق منع نشاط LDHA، "مفتاح" واربورغ.المصدر: medicalxpress

يصادف عام 2021 الذكرى المئوية لاكتشاف أساسي يتم تدريسه في كتب الكيمياء الحيوية، والمتمثل فيما يعرف بـ"تأثير واربورغ".وفي عام 1921، لاحظ الطبيب الألماني أوتو واربورغ أن الخلايا السرطانية تحصد الطاقة من سكر الجلوكوز بطريقة غير فعالة بشكل غريب: فبدلا من "حرقها" باستخدام الأكسجين، تقوم الخلايا السرطانية بما تفعله الخميرة، تخمرها. وتحدث هذه العملية المستقلة عن الأكسجين بسرعة، ولكنها تترك الكثير من الطاقة في الجلوكوز غير مستغلة.وتم اقتراح العديد من الفرضيات لتفسير تأثير واربورغ على مر السنين، بما في ذلك فكرة أن الخلايا السرطانية لديها ميتوكوندريا (مصانع طاقة) معيبة، وبالتالي لا يمكنها إجراء عملية احتراق محكم للجلوكوز. لكن أيا من هذه التفسيرات لم تصمد أمام اختبار الزمن. (على سبيل المثال، تعمل الميتوكوندريا في الخلايا السرطانية بشكل جيد).ويقدم فريق بحثي في ​​معهد سلون كيترينغ بقيادة عالم المناعة مينغ لي، إجابة جديدة بناء على مجموعة ضخمة من التجارب الجينية والكيميائية الحيوية ونشرت في 21 يناير في مجلة Science.ويعود الأمر إلى ارتباط لم يسبق له مثيل بين استقلاب واربورغ ونشاط إنزيم قوي في الخلية يسمى "فوسفوينوسيتيد 3 كيناز" (PI3).ويقول الدكتور لي: "إن PI3 هو جزيء إشارة رئيسي يعمل تقريبا مثل القائد العام لعملية التمثيل الغذائي للخلية. ومعظم الأحداث الخلوية المكلفة للطاقة في الخلايا، بما في ذلك انقسام الخلايا، تحدث فقط عندما يعطي PI3 الإشارة".ومع تحول الخلايا إلى استقلاب واربورغ، يزداد نشاط PI3، وبالتالي يتم تعزيز التزام الخلايا بالانقسام. وهو ما يشبه إلى حد ما إعطاء القائد العام مكبر صوت.وتراجع النتائج وجهة النظر المقبولة عموما بين علماء الكيمياء الحيوية التي ترى أن عملية التمثيل الغذائي ثانوية بالنسبة لإشارات الخلية. كما يقترحون أن استهداف التمثيل الغذائي يمكن أن يكون وسيلة فعالة لإحباط نمو السرطان.ودرس الدكتور لي وفريقه، بما في ذلك طالب الدراسات العليا كي شو، استقلاب واربورغ في الخلايا المناعية، والتي تعتمد أيضا على هذا الشكل غير الفعال من التمثيل الغذائي. وعندما يتم تنبيه الخلايا المناعية إلى وجود عدوى، يتحول نوع معين يسمى الخلايا التائية من الشكل النموذجي للتمثيل الغذائي لحرق الأكسجين إلى استقلاب واربورغ حيث تنمو في العدد وتزيد من آليات مكافحة العدوى.والمفتاح الرئيسي الذي يتحكم في هذا التحول هو إنزيم يسمى lactate dehydrogenase A أو اختصارا LDHA، والذي يتم إجراؤه استجابة لإشارات PI3.ونتيجة لهذا التبديل، يظل الجلوكوز يتحلل جزئيا فقط ويتم إنشاء عمل طاقة الخلية، المسماة ATP، بسرعة في العصارة الخلوية للخلية. (على النقيض من ذلك، عندما تستخدم الخلايا الأكسجين لحرق الجلوكوز، تنتقل الجزيئات المتحللة جزئيا إلى الميتوكوندريا ويتم تكسيرها هناك لجعل ATP في تأخير).ووجد الدكتور لي وفريقه أنه في الفئران، لا تستطيع الخلايا التائية التي تفتقر إلى إنزيم LDHA الحفاظ على نشاط PI3، ونتيجة لذلك لا يمكنها مكافحة العدوى بشكل فعال.وبالنسبة للدكتور لي وفريقه، فإن هذا يعني أن هذا الإنزيم الأيضي كان يتحكم في نشاط إشارات الخلية.ويقول الدكتور لي: "لقد عمل هذا المجال على افتراض أن التمثيل الغذائي ثانوي لإشارات عامل النمو. وبعبارة أخرى، تؤدي إشارات عامل النمو إلى عملية التمثيل الغذائي، ويدعم التمثيل الغذائي نمو الخلايا وتكاثرها. لذا فإن ملاحظة أن إنزيم التمثيل الغذائي مثل LDHA يمكن أن يؤثر على إشارات عامل النمو من خلال PI3 لفتت انتباهنا حقا".ومثل الكينازات الأخرى، يعتمد PI3 على ATP للقيام بعمله. ونظرا لأن ATP هو المنتج الصافي لعملية التمثيل الغذائي لواربورغ، يتم إنشاء حلقة ردود فعل إيجابية بين استقلاب واربورغ ونشاط PI3، ما يضمن استمرار نشاط PI3، وبالتالي الانقسام الخلوي.أما عن سبب لجوء الخلايا المناعية المنشطة إلى هذا الشكل من التمثيل الغذائي، فإن الدكتور لي يشتبه في أن ذلك له علاقة بحاجة الخلايا إلى إنتاج ATP بسرعة لتكثيف انقسام الخلايا وآليات مكافحة العدوى.وعلى الرغم من أن الفريق توصل إلى اكتشافاته في الخلايا المناعية، إلا أن هناك أوجه تشابه واضحة مع السرطان.ويقول الدكتور لي: "إن PI3 هو كيناز شديد الأهمية للغاية في سياق السرطان. إنه ما يرسل إشارة النمو للخلايا السرطانية للانقسام، وهو أحد أكثر مسارات الإشارات نشاطا بشكل مفرط في السرطان".وكما هو الحال مع الخلايا المناعية، قد تستخدم الخلايا السرطانية استقلاب واربورغ كطريقة للحفاظ على نشاط مسار الإشارات هذا وبالتالي ضمان استمرار نموها وانقسامها.وتثير النتائج الاحتمال المثير للاهتمام بأن الأطباء يمكن أن يحدوا من نمو السرطان عن طريق منع نشاط LDHA، "مفتاح" واربورغ.المصدر: medicalxpress



اقرأ أيضاً
الصين.. اكتشاف فيروسين خطيرين في الخفافيش!
اكتشف علماء الأحياء الجزيئية الصينيون 24 فيروسا غير معروف سابقا في أجسام الخفافيش التي تعيش في مقاطعة يونان جنوب الصين، وتم تحديد فيروسين يشبهان العوامل المسببة لحمى هيندرا ونيباه. وتشير المجلة العلمية PLoS Pathogens إلى أن هذه العوامل الممرضة يمكن أن تسبب تفشي عدوى حيوانية المنشأ جديدة عند اتصال الخفافيش بالبشر. ويقول الباحثون: "حللنا مجموعة من العوامل الممرضة الموجودة في كلى الخفافيش التي تعيش في أراضي مقاطعة يوننان بالقرب من بساتين القرى وفي الكهوف المجاورة. وخلال هذا التحليل، حددنا عاملين ممرضين في آن واحد، قريبين جدا من فيروسي هيندرا ونيباه، اللذين قد يؤدي اختراقهما لمجموعات الحيوانات الأليفة أو البشر إلى عواقب وخيمة". وقد درس العلماء كليتي 142 خفاشا من عشرة أنواع من خمس مناطق في يوننان. وباستخدام طرق تسلسل الحمض النووي عالية الإنتاجية، اكتشف العلماء أن 24 منها لم تكن معروفة من قبل للعلم، وكذلك نوعين من البكتيريا أحدهما لم يكن معروفا في السابق ونوعا جديدا من الكائنات البسيطة- البروتوزوا- كلوسيلا يونانينسيس( clausella yunnanensis) وأثار اهتمام العلماء بصورة خاصة فيروسان جديدان من جنس فيروس هينيبا (Henipavirus)، وهو نفس الفيروس الذي يشمل فيروسات نيباه وهندرا، المعروفين بارتفاع معدل الوفيات بين البشر. وقد عثر على الفيروسات المكتشفة في الخفافيش الآكلة للفاكهة التي تعيش بالقرب من البساتين، بالقرب من المستوطنات البشرية، لأن الفيروسات من هذا النوع يمكن أن تنتقل عن طريق البول، لذلك يحذر الباحثون من خطر الإصابة بالعدوى من خلال الفاكهة الملوثة.
علوم

بالأدلة التجريبية.. إثبات وجود ذكاء جماعي لدى النمل!
من بين عشرات الآلاف من أنواع النمل طورت بعضها سلوكيات "ذكية" مدهشة مثل الزراعة، وتربية الماشية، والعمليات الجراحية، و"القرصنة"، والتباعد الاجتماعي، وبناء عمارات معقدة. وأبرز هذه السلوكيات تتمثل بـ: الزراعة: حيث تقوم بعض أنواع النمل بزراعة الفطريات وتغذيتها تربية الماشية: عبر رعاية حشرات المن واستغلال إفرازاتها العمليات الجراحية: مثل خياطة جروح أفراد المستعمرة القرصنة: من خلال غزو مستعمرات نمل أخرى وسرقة مواردها التباعد الاجتماعي: كإجراء وقائي ضد انتشار الأمراض الهندسة المعمارية: ببناء مستعمرات متعددة الطوابق بأنظمة تهوية متقنة مع ذلك، يبدو دماغ النملة الذي لا يتجاوز حجمه حبة خشخاش ويحتوي على حجم من 250 ألفا إلى مليون خلية عصبية (مقابل 86 مليارا لدى الإنسان) بسيطا جدا، مقارنة بهذه الإنجازات. واكتشف باحثون من إسرائيل وسويسرا كيف تتحد هذه "الأدمغة المجهرية" لتشكل ذكاء سربيا قادرا على التخطيط الاستراتيجي. ونُشرت نتائج الدراسات في مجلة Frontiers in Behavioral Neuroscience. وألهمت الباحثين أرصاد غير متوقعة في الطبيعة، حيث لاحظوا أن نملات فردية تستخدم فكها العلوية لإزالة الحجارة الصغيرة من حول المجموعات التي تنقل فريسة كبيرة بشكل جماعي. وقال البروفيسور أوفر فاينرمان من معهد "وايزمان": "عندما رأينا لأول مرة النمل يزيل عقبات صغيرة من طريق حمولة يجري نقلها، دهشنا حقا، ويبدو أن هذه الكائنات الصغيرة تتنبأ بصعوبات تنتظرها في الطريق وتحاول مساعدة رفاقها مسبقا". وكما لاحظ العلماء، فإن هذا الذكاء يتجلى على مستوى المستعمرة بأكملها، وليس على مستوى نملة واحدة، إذ تستجيب كل نملة لإشارات بسيطة، مثل آثار الفيرومونات الطازجة، من دون إدراك هدف عام، لكنها تحقق معا نتائج معقدة وهادفة. ومن أجل دراسة هذا السلوك، أجرى الباحثون سلسلة من 83 تجربة، شاركت فيها مستعمرة من النمل "المجنون" (Paratrechina longicornis ) الذي يعيش في المعهد. واستُخدموا كرات بلاستيكية قطرها 1.5 ملليمتر (نصف طول جسم النملة) كعوائق تُعيق طريق الحشرات. أما الطُعم فتم هنا استخدام حبيبات طعام القطط الذي يُفضله النمل بشدة. ومثل العديد من أنواع النمل، تنشر P. longicornis معلومات عن وجود فريسة كبيرة بين أفراد المستعمرة عبر مسارات فيرومونية، فهي تتحرك بشكل فوضوي (ومن هنا جاءت تسميتها "مجنونة")، وتلمس بطونها الأرض كل 0.2 ثانية، تاركة قطرة صغيرة من الفيرومون. ويجذب هذا الفيرومون عمالا آخرين بسرعة نحو الطعام. لكن العلماء اكتشفوا هنا أنه يلعب أيضا دورا محوريا في سلوك التطهير. وأظهرت الدراسة أن النمل العامل غالبا ما يزيل الكرات عند بُعد 40 مم تقريبا عن الطعام باتجاه العش. حيث ينقل هذه الكرات إلى مسافة تصل إلى 50 مم، مُزيلا إياها من الطريق المؤدي إلى العش. وسجل أحدها رقما قياسيا بإزالة 64 عائقا على التوالي. "وتشير هذه النتائج إلى أن انطباعنا الأولي كان خاطئا، ففي الواقع، لا يفهم النمل العامل الوضع على الإطلاق. وينشأ هذا السلوك الذكي على مستوى المستعمرة ككل، وليس على مستوى الأفراد. وكل نملة تتبع إشارات بسيطة، مثل العلامات الشمية الطازجة التي تتركها نملات أخرى بدون حاجة لفهم الصورة الكاملة، لكن جماعيّا فإنها تعطي نتيجة ذكية هادفة"، هذا ما خلصت إليه الدكتورة دانييل ميرش الباحثة في مرحلة ما بعد الدكتوراه في المعهد. المصدر: روسيا اليوم عن Naukatv.ru
علوم

العثور على نوع جديد من الثدييات من عصر الديناصورات في منغوليا
عثر فريق دولي من علماء الحفريات على أحفورة في صحراء غوبي في منغوليا لنوع غير معروف من الثدييات عاش في العصر الطباشيري الذي امتد من 100 مليون سنة إلى حوالي 66 مليون سنة مضت.وأفادت مجلة " Acta Palaeontologica Polonica" بأن العلماء أطلقوا على الحيوان الجديد الذي يبلغ حجمه حجم الفأر تقريبا، اسم "رافجا إيشي" ( Ravjaa ishiii).ويذكر أن العلماء عثروا في عام 2019، على جزء من الفك السفلي يبلغ طوله سنتيمترا واحدا فقط.وأظهر التحليل أن الحيوان ينتمي إلى عائلة Zhelestidae؛ وهي ثدييات قديمة من العصر الطباشيري، ولكن الشكل الفريد للفك والأضراس العالية يميزه عن الممثلين الآخرين للمجموعة، ما جعل من الممكن تحديد جنس ونوع منفصلين.ويغير هذا الاكتشاف، الذي هو الأول لـ "Zhelestidae " في منغوليا، فكرة توزيع هذه الحيوانات، حيث كان يعتقد في السابق أنها تعيش بشكل رئيسي في المناطق الساحلية، لكن "رافجا إيشي" يثبت أنها عاشت أيضا في أعماق المناطق القارية.
علوم

حقن الذهب في العين.. تقنية جديدة للحفاظ على البصر
كشفت دراسة جديدة تم تطبيقها على الفئران في الولايات المتحدة أن حقن الذهب في العين قادر على علاج التنكس البقعي المرتبط بالعمر (AMD) ومشاكل العين الأخرى. ويؤثر التنكس البقعي على الملايين في جميع أنحاء العالم ويزداد احتماله مع تقدمنا في العمر، ويتسبب في ضبابية الرؤية ومشاكل أخرى. ويقول المهندس الحيوي جياروي ني، من جامعة براون في ولاية رود آيلاند: "هذا نوع جديد من دعامات الشبكية لديه القدرة على استعادة الرؤية المفقودة بسبب التنكس الشبكي دون الحاجة إلى جراحة مُعقدة أو تعديل جيني، نعتقد أن هذه التقنية قد تُحدث نقلة نوعية في أساليب علاج حالات التنكس الشبكي". كيف يعمل العلاج الجديد؟ يتم دمج جزيئات نانوية من الذهب دقيقة جدا، أرق من شعرة الإنسان آلاف المرات، مع أجسام مضادة تستهدف خلايا معينة في العين، ثم يتم حقنها في الغرفة الزجاجية المليئة بالهلام بين الشبكية وعدسة العين. وبعد ذلك، يتم استخدام جهاز ليزر صغير بالأشعة تحت الحمراء لتحفيز هذه الجزيئات النانوية وتنشيط الخلايا المحددة بنفس الطريقة التي تعمل بها الخلايا الحساسة للضوء. وعلى الفئران التي تم اختبار العلاج عليها، والتي تم تعديلها لتصيبها اضطرابات شبكية، كان العلاج فعالا في استعادة الرؤية جزئيا على الأقل (من الصعب إجراء اختبار رؤية كامل على الفئران)، حسبما ذكر موقع "ساينس أليرت" العلمي. وأوضح ني نتائج التجربة قائلا: "أظهرنا أن الجزيئات النانوية يمكن أن تبقى في الشبكية لعدة أشهر دون سمية كبيرة، وأثبتنا أنها يمكن أن تحفز النظام البصري بنجاح. وهذا أمر مشجع للغاية للتطبيقات المستقبلية". وكما هو الحال في معظم الدراسات على الفئران، فهناك فرصة جيدة لترجمة النتائج وتطبيقها على البشر، لكن ذلك سيستغرق بعض الوقت للوصول إلى استخدام آمن يمكن للسلطات الصحية الموافقة عليه.
علوم

التعليقات مغلقة لهذا المنشور

الطقس

°
°

أوقات الصلاة

الأحد 06 يوليو 2025
الصبح
الظهر
العصر
المغرب
العشاء

صيدليات الحراسة